Skip to main content
Article thumbnail
Location of Repository

Semiparametric Additive Transformation Model under Current Status Data

By Guang Cheng and Xiao Wang

Abstract

We consider the efficient estimation of the semiparametric additive transformation model with current status data. A wide range of survival models and econometric models can be incorporated into this general transformation framework. We apply the B-spline approach to simultaneously estimate the linear regression vector, the nondecreasing transformation function, and a set of nonparametric regression functions. We show that the parametric estimate is semiparametric efficient in the presence of multiple nonparametric nuisance functions. An explicit consistent B-spline estimate of the asymptotic variance is also provided. All nonparametric estimates are smooth, and shown to be uniformly consistent and have faster than cubic rate of convergence. Interestingly, we observe the convergence rate interfere phenomenon, i.e., the convergence rates of B-spline estimators are all slowed down to equal the slowest one. The constrained optimization is not required in our implementation. Numerical results are used to illustrate the finite sample performance of the proposed estimators.Comment: 32 pages, 5 figure

Topics: Mathematics - Statistics Theory
Year: 2011
OAI identifier: oai:arXiv.org:1105.1304
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://arxiv.org/abs/1105.1304 (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.