Skip to main content
Article thumbnail
Location of Repository

Statistical Delay Control and QoS-Driven Power Allocation Over Two-Hop Wireless Relay Links

By Qinghe Du, Yi Huang, Pinyi Ren and Chao Zhang

Abstract

The time-varying feature of wireless channels usually makes the hard delay bound for data transmissions unrealistic to guarantee. In contrast, the statistically-bounded delay with a small violation probability has been widely used for delay quality-of-service (QoS) characterization and evaluation. While existing research mainly focused on the statistical-delay control in single-hop links, in this paper we propose the QoS-driven power-allocation scheme over two-hop wireless relay links to statistically upper-bound the end-to-end delay under the decodeand- forward (DF) relay transmissions. Specifically, by applying the effective capacity and effective bandwidth theories, we first analyze the delay-bound violation probability over two tops each with independent service processes. Then, we show that an efficient approach for statistical-delay guarantees is to make the delay distributions of both hops identical, which, however, needs to be obtained through asymmetric resource allocations over the two hops. Motivated by this fact, we formulate and solve an optimization problem aiming at minimizing the average power consumptions to satisfy the specified end-to-end delay-bound violation probability over two-hop relay links. Also conducted is a set of simulations results to show the impact of the QoS requirements, traffic load, and position of the relay node on the power allocation under our proposed optimal scheme

Topics: Computer Science - Information Theory
Year: 2011
OAI identifier: oai:arXiv.org:1105.0099
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://arxiv.org/abs/1105.0099 (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.