Skip to main content
Article thumbnail
Location of Repository

Differential Spaces, Vector Fields, and Orbit-Type Stratifications

By Jordan Watts


Let $G$ be a Lie group, and let $(M,\omega)$ be a symplectic manifold. If $G$ admits a Hamiltonian action on $(M,\omega)$ with momentum map $\mu$, then $M$, the zero-level set of $\mu$, the orbit space, and the corresponding symplectic quotient all have induced stratifications. We push this setting into the language of differential spaces, and as a consequence we find that the stratifications are intrinsic to the ring of smooth functions on each space.Comment: 44 pages. Earlier versions of this paper were supposed to prove a result regarding a de Rham complex of differential forms on the symplectic quotient. A crucial lemma in the proof was incorrect. The theory used remains useful for studying the stratifications mentioned in the abstract from the point of view of differential spaces. Erroneous parts remove

Topics: Mathematics - Symplectic Geometry, Mathematics - Differential Geometry
Year: 2013
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.