Skip to main content
Article thumbnail
Location of Repository

Eigenvectors of Wigner matrices: universality of global fluctuations

By Florent Benaych-Georges

Abstract

Let $U_n=[u_{i,j}]$ be the eigenvectors matrix of a Wigner matrix. We prove that under some moments conditions, the bivariate random process indexed by $[0,1]^2$ with value at $(s,t)$ equal to the sum, over $1\le i \le ns$ and $1\le j \le nt$, of $|u_{i,j}|^2 - 1/n$, converges in distribution to the bivariate Brownian bridge. This result has already been proved for GOE and GUE matrices. It is conjectured here that the necessary and sufficient condition, for the result to be true for a general Wigner matrix, is the matching of the moments of orders 1, 2 and 4 of the entries of the Wigner with the ones of a GOE or GUE matrix. Surprisingly, the third moment of the entries of the Wigner matrix has no influence on the limit distribution.Comment: 18 pages, 1 figure. Proposition 2.10 changed, Introduction and Abstract slightly changed. A reference adde

Topics: Mathematics - Probability, Mathematics - Operator Algebras, 15A52, 60F05
Year: 2012
OAI identifier: oai:arXiv.org:1104.1219
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://arxiv.org/abs/1104.1219 (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.