Skip to main content
Article thumbnail
Location of Repository

Mechanisms of Baryon Loss for Dark Satellites in Cosmological SPH Simulations

By S. Nickerson, G. Stinson, H. M. P. Couchman, J. Bailin and J. Wadsley


We present a study of satellites in orbit around a high-resolution, smoothed particle hydrodynamics (SPH) galaxy simulated in a cosmological context. The simulated galaxy is approximately the same mass as the Milky Way. The cumulative number of luminous satellites at z = 0 is similar to the observed system of satellites orbiting the Milky Way although an analysis of the satellite mass function reveals an order of magnitude more dark satellites than luminous. Some of the dark subhalos are more massive than some of the luminous subhalos at z = 0. What separates luminous and dark subhalos is not their mass at z = 0, but the maximum mass the subhalos ever achieve. We study the effect of four mass loss mechanisms on the subhalos: ultraviolet (UV) ionising radiation, ram pressure stripping, tidal stripping, and stellar feedback, and compare the impact of each of these four mechanisms on the satellites. In the lowest mass subhalos, UV is responsible for the majority of the baryonic mass loss. Ram pressure stripping removes whatever mass remains from the low mass satellites. More massive subhalos have deeper potential wells and retain more mass during reionisation. However, as satellites pass near the centre of the main halo, tidal forces cause significant mass loss from satellites of all masses. Satellites that are tidally stripped from the outside can account for the luminous satellites that are lower mass than some of the dark satellites. Stellar feedback has the greatest impact on medium mass satellites that had formed stars, but lost all their gas by z = 0. Our results demonstrate that the missing satellite problem is not an intractable issue with the cold dark matter cosmology, but is rather a manifestation of baryonic processes.Comment: 15 pages, 18 figures, accepted at MNRA

Topics: Astrophysics - Cosmology and Nongalactic Astrophysics
Year: 2011
DOI identifier: 10.1111/j.1365-2966.2011.18700.x
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.