Skip to main content
Article thumbnail
Location of Repository

Weibull-type limiting distribution for replicative systems

By Junghyo Jo, Jean-Yves Fortin and M. Y. Choi

Abstract

The Weibull function is widely used to describe skew distributions observed in nature. However, the origin of this ubiquity is not always obvious to explain. In the present paper, we consider the well-known Galton-Watson branching process describing simple replicative systems. The shape of the resulting distribution, about which little has been known, is found essentially indistinguishable from the Weibull form in a wide range of the branching parameter; this can be seen from the exact series expansion for the cumulative distribution, which takes a universal form. We also find that the branching process can be mapped into a process of aggregation of clusters. In the branching and aggregation process, the number of events considered for branching and aggregation grows cumulatively in time, whereas, for the binomial distribution, an independent event occurs at each time with a given success probability.Comment: 6 pages and 5 figure

Topics: Physics - Data Analysis, Statistics and Probability, Condensed Matter - Statistical Mechanics, Physics - Biological Physics, Quantitative Biology - Populations and Evolution
Year: 2011
DOI identifier: 10.1103/PhysRevE.83.031123
OAI identifier: oai:arXiv.org:1103.3038
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://arxiv.org/abs/1103.3038 (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.