Skip to main content
Article thumbnail
Location of Repository

The groups $S^3$ and $SO(3)$ have no invariant binary $k$-network

By Taras Banakh and Slawomir Turek


A family $\mathcal N$ of closed subsets of a topological space $X$ is called a {\em closed $k$-network} if for each open set $U\subset X$ and a compact subset $K\subset U$ there is a finite subfamily $\mathcal F\subset\mathcal N$ with $K\subset\bigcup\F\subset \mathcal N$. A compact space $X$ is called {\em supercompact} if it admits a closed $k$-network $\mathcal N$ which is {\em binary} in the sense that each linked subfamily $\mathcal L\subset\mathcal N$ is centered. A closed $k$-network $\mathcal N$ in a topological group $G$ is {\em invariant} if $xAy\in\mathcal N$ for each $A\in\mathcal N$ and $x,y\in G$. According to a result of Kubi\'s and Turek, each compact (abelian) topological group admits an (invariant) binary closed $k$-network. In this paper we prove that the compact topological groups $S^3$ and $\SO(3)$ admit no invariant binary closed $k$-network.Comment: 5 page

Topics: Mathematics - General Topology, Mathematics - Group Theory, 54D30, 22C05
Year: 2013
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.