Skip to main content
Article thumbnail
Location of Repository

ADAPTIVE MULTILEVEL METHODS IN SPACE AND TIME FOR PARABOLIC PROBLEMS—THE PERIODIC CASE

By J. B. Burie and M. Marion

Abstract

Abstract. The aim of this paper is to display numerical results that show the interest of some multilevel methods for problems of parabolic type. These schemes are based on multilevel spatial splittings and the use of different time steps for the various spatial components. The spatial discretization we investigate is of spectral Fourier type, so the approximate solution naturally splits into the sum of a low frequency component and a high frequency one. The time discretization is of implicit/explicit Euler type for each spatial component. Based on a posteriori estimates, we introduce adaptive one-level and multilevel algorithms. Two problems are considered: the heat equation and a nonlinear problem. Numerical experiments are conducted for both problems using the one-level and the multilevel algorithms. The multilevel method is up to 70 % faster than the one-level method. 1

Year: 2011
OAI identifier: oai:CiteSeerX.psu:10.1.1.192.2889
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.ams.org/journals/mc... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.