Location of Repository

Y.: On the equivalence of weak learnability and linear separability: New relaxations and efficient boosting algorithms

By Shai Shalev-shwartz and Yoram Singer


Boosting algorithms build highly accurate prediction mechanisms from a collection of low-accuracy predictors. To do so, they employ the notion of weak-learnability. The starting point of this paper is a proof which shows that weak learnability is equivalent to linear separability with ℓ1 margin. The equivalence is a direct consequence of von Neumann’s minimax theorem. Nonetheless, we derive the equivalence directly using Fenchel duality. We then use our derivation to describe a family of relaxations to the weak-learnability assumption that readily translates to a family of relaxations of linear separability with margin. This alternative perspective sheds new light on known soft-margin boosting algorithms and also enables us to derive several new relaxations of the notion of linear separability. Last, we describe and analyze an efficient boosting framework that can be used for minimizing the loss functions derived from our family of relaxations. In particular, we obtain efficient boosting algorithms for maximizing hard and soft versions of the ℓ1 margin.

Year: 2011
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.cs.huji.ac.il/%7Esh... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.