Location of Repository

Detecting Anomalies to Improve Classification Performance in Opportunistic Sensor Networks

By Hesam Sagha, José Del R. Millán and Ricardo Chavarriaga

Abstract

Abstract—Anomalies and changes in sensor networks which are deployed for activity recognition may abate the classification performance. Detection of anomalies followed by compensatory reaction would ameliorate the performance. This paper introduces a novel approach to detect the faulty or degraded sensors in a multi-sensory environment and a way to compensate it. The approach considers the distance between each classifier output and the fusion output to decide whether a sensor (classifier) is degraded or not. Evaluation is done on two activity datasets with different configuration of sensors and different types of noise. The results show that using the method improves the classification accuracy. Keywords-Activity recognition, classifier fusion, anomaly detection, intelligent sensor nodes I

Year: 2011
OAI identifier: oai:CiteSeerX.psu:10.1.1.190.3176
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://infoscience.epfl.ch/rec... (external link)
  • http://infoscience.epfl.ch/rec... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.