Skip to main content
Article thumbnail
Location of Repository

Learning to Combine Trained Distance Metrics for Duplicate Detection in Databases

By Mikhail Bilenko and Raymond J. Mooney


The problem of identifying approximately duplicate records in databases has previously been studied as record linkage, the merge/purge problem, hardening soft databases, and field matching. Most existing approaches have focused on efficient algorithms for locating potential duplicates rather than precise similarity metrics for comparing records. In this paper, we present a domain-independent method for improving duplicate detection accuracy using machine learning. First, trainable distance metrics are learned for each field, adapting to the specific notion of similarity that is appropriate for the field's domain. Second, a classifier is employed that uses several diverse metrics for each field as distance features and classifies pairs of records as duplicates or non-duplicates. We also propose an extended model of learnable string distance which improves over an existing approach. Experimental results on real and synthetic datasets show that our method outperforms traditional techniques

Topics: data cleaning, deduplication, record linkage, distance metric learning, trained similarity measures, string edit distance
Year: 2002
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.