In this paper, we show that for any positive integer k, the set φ(Fn+1) φ(Fn+2) φ(Fn+k), ,..., : n ≥ 1 φ(Fn) φ(Fn) φ(Fn) is dense in R k ≥0, where φ(m) is the Euler function of the positive integer m and Fn is the nth Fibonacci number
To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.