Location of Repository

Néron-Severi groups under specialization

By Davesh Maulik and Bjorn Poonen

Abstract

Abstract. André used Hodge-theoretic methods to show that in a smooth proper family X → B of varieties over an algebraically closed field k of characteristic 0, there exists a closed fiber having the same Picard number as the geometric generic fiber, even if k is countable. We give a completely different approach to André’s theorem, which also proves the following refinement: in a family of varieties with good reduction at p, the locus on the base where the Picard number jumps is nowhere p-adically dense. Our proof uses the “p-adic Lefschetz (1, 1) theorem ” of Berthelot and Ogus, combined with an analysis of p-adic power series. We prove analogous statements for cycles of higher codimension, assuming a p-adic analogue of the variational Hodge conjecture, and prove that this analogue implies the usual variational Hodge conjecture. Applications are given to abelian schemes and to proper families of projective varieties. 1

Year: 2009
OAI identifier: oai:CiteSeerX.psu:10.1.1.186.3177
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www-math.mit.edu/%7Epoo... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.