Location of Repository

© 2010 Science Publications Knowledge Discovery in Biochemical Pathways Using Minepathways

By Ford Lumban Gaol

Abstract

Abstract: Problem statement: The advancement of the biochemical research gives profound effect to the collection of biochemical data. Approach: In the recent years, data and networks in biochemical pathways are abundant that allow to do process mining in order to obtain useful information. By using graph theory as a tool to model these interactions, it can be formally find the solution. Results: The core of the problem of mining patterns is a subgraph isomorphism which until now has been in the NPclass problems. Early identification showed that in the context biochemical pathways has unique node labeling that result simplifying pattern mining problem radically. Conclusion: Process will be more efficient because the end result that is needed is maximum pattern that could reduce redundant patterns. The algorithm that used is a modification of the maximum item set patterns that are empirically most efficiently at this time

Topics: Key words, Biochemical pathways, graph theory, subgraph isomorphism, NP problems, maximum
Year: 2011
OAI identifier: oai:CiteSeerX.psu:10.1.1.185.1215
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.scipub.org/fulltext... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.