Skip to main content
Article thumbnail
Location of Repository

Title: Discriminating Between Heavy-Tailed Distributions

By Amsi Seminar Room and Friday May


These days it is commonly accepted in the financial world that the tails of an asset return distribution are much heavier than those of the Gaussian distribution. Furthermore the choice of distribution is crucial for suchpurposes as value-at-risk and option pricing. Unfortunately, opinion on the tail weight question is divided. One school of thought believes that they are most appropriately modelled by exponential distributions and another believes that power tailed distributions are needed. In the latter group, some believe that variances are finite and others believe that stable distributions should be used. The question that I will address is, given a competing family of distributions, whose tails are heavier than normal, how large a sample size n does one need to distinguish the tails of the distribution at a specified quantile p? Specifically, how large a sample do we need to distinguish the Laplace from the t distribution, and the t distribution from the stable distribution etc?

Topics: Abstract
Year: 2010
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.