Skip to main content
Article thumbnail
Location of Repository

Automated Judgment of Document Qualities

By Kwong Bor Ng, Paul Kantor, Tomek Strzalkowski, Nina Wacholder, Rong Tang, Bing Bai, Robert Rittman, Peng Song and Ying Sun

Abstract

The authors report on a series of experiments to automate the assessment of document qualities such as depth and objectivity. The primary purpose is to develop a qualitysensitive functionality, orthogonal to relevance, to select documents for an interactive question-answering system. The study consisted of two stages. In the classifier construction stage, nine document qualities deemed important by information professionals were identified and classifiers were developed to predict their values. In the confirmative evaluation stage, the performance of the developed methods was checked using a different document collection. The quality prediction methods worked well in the second stage. The results strongly suggest that the best way to predict document qualities automatically is to construct classifiers on a person-by-person basis. Overview We report the results of experiments to automate the assessment of various document qualities such as depth and objectivity. The primary purpose of the study is to develop a quality-sensitive functionality, orthogonal to relevance, to identify documents for use in an automatic questio

Year: 2004
OAI identifier: oai:CiteSeerX.psu:10.1.1.178.2358
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.scils.rutgers.edu/%... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.