Skip to main content
Article thumbnail
Location of Repository

A Simple Algorithm for Nearest Neighbor Search in High Dimensions

By Sameer A. Nene and Shree K. Nayar

Abstract

Abstract—The problem of finding the closest point in high-dimensional spaces is common in pattern recognition. Unfortunately, the complexity of most existing search algorithms, such as k-d tree and R-tree, grows exponentially with dimension, making them impractical for dimensionality above 15. In nearly all applications, the closest point is of interest only if it lies within a user-specified distance e. We present a simple and practical algorithm to efficiently search for the nearest neighbor within Euclidean distance e. The use of projection search combined with a novel data structure dramatically improves performance in high dimensions. A complexity analysis is presented which helps to automatically determine e in structured problems. A comprehensive set of benchmarks clearly shows the superiority of the proposed algorithm for a variety of structured and unstructured search problems. Object recognition is demonstrated as an example application. The simplicity of the algorithm makes it possible to construct an inexpensive hardware search engine which can be 100 times faster than its software equivalent. A C++ implementation of our algorithm is available upon request to search@cs.columbia.edu/CAVE/

Topics: Index Terms—Pattern classification
Year: 1997
OAI identifier: oai:CiteSeerX.psu:10.1.1.161.139
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www1.cs.columbia.edu/CA... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.