Skip to main content
Article thumbnail
Location of Repository

Simultaneous Localization and Mapping: Part I



The simultaneous localization and mapping (SLAM) problem asks if it is possible for a mobile robot to be placed at an unknown location in an unknown environment and for the robot to incrementally build a consistent map of this environment while simultaneously determining its location within this map. A solution to the SLAM problem has been seen as a “holy grail ” for the mobile robotics community as it would provide the means to make a robot truly autonomous. The “solution ” of the SLAM problem has been one of the notable successes of the robotics community over the past decade. SLAM has been formulated and solved as a theoretical problem in a number of different forms. SLAM has also been implemented in a number of different domains from indoor robots to outdoor, underwater, and airborne systems. At a theoretical and conceptual level, SLAM can now be considered a solved problem. However, substantial issues remain in practically realizing more general SLAM solutions and notably in building and using perceptually rich maps as part of a SLAM algorithm. This two-part tutorial and survey of SLAM aims to provide a broad introduction to this rapidly growing field. Part I (this article) begins by providing a brief history of early developments in SLAM. The formulation section introduces the structure the SLAM problem in now standard Bayesian form, and explains the evolution of the SLAM process. The solution section describes the two key computational solutions to the SLAM problem through the use of the extended Kalman filter (EKF-SLAM) and through the use of Rao-Blackwellized particle filters (FastSLAM). Other recent solutions to the SLAM problem are discussed in Part II of this tutorial. The application section describes a number of important real-world implementations of SLAM and also highlights implementations where the sensor data and software are freely down-loadable for other researchers to study. Part II of this tutorial describes major issues in computation, convergence, and data association in SLAM. These are subjects that have been the main focus of the SLAM research community over the past five years

Year: 2009
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.