Skip to main content
Article thumbnail
Location of Repository

156 Strain-tunable Photonic Band Gap Microcavity Waveguides in Silicon at 1.55 µm

By Chee Wei Wong, Xiaodong Yang, Peter T. Rakich, Steven G. Johnson, Minghao Qi, Yongbae Jeon, George Barbastathis and Sang-gook Kim

Abstract

The majority of photonic crystals developed till-date are not dynamically tunable, especially in silicon-based structures. Dynamic tunability is required not only for reconfiguration of the optical characteristics based on user-demand, but also for compensation against external disturbances and relaxation of tight device fabrication tolerances. Recent developments in photonic crystals have suggested interesting possibilities for static small-strain modulations to affect the optical characteristics 1-3, including a proposal for dynamic strain-tunability 4. Here we report the theoretical analysis, device fabrication, and experimental measurements of tunable silicon photonic band gap microcavities in optical waveguides, through direct application of dynamic strain to the periodic structures 5. The device concept consists of embedding the microcavity waveguide 6 on a deformable SiO2 membrane. The membrane is strained through integrated thin-film piezoelectric microactuators. We show a 1.54 nm shift in cavity resonances at 1.56 µm wavelengths for an applied piezoelectric strain of 0.04%. This is in excellent agreement with our modeling, predicted through first-order semi-analytical perturbation theory 7 and finite-difference time-domain calculations. The measured microcavity transmission shows resonances between 1.55 to 1.57 µm, with Q factors ranging from 159 to 280. For operation at infrared wavelengths, we integrate X-ray and electron-beam lithography (for critical 100 nm feature sizes) with thin-film piezoelectric surface micromachining. This level of integration permits realizable silicon-based photonic chip devices, such as high-density optical filters and spontaneous-emission enhancement devices with tunable configurations

Year: 2009
OAI identifier: oai:CiteSeerX.psu:10.1.1.135.8310
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://math.mit.edu/~stevenj/p... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.