Skip to main content
Article thumbnail
Location of Repository

dQUOB: Managing Large Data Flows Using Dynamic Embedded Queries

By Beth Plale and Karsten Schwan


The dQUOB system satisfies client need for specific information from high-volume data streams. The data streams we speak of are the flow of data existing during large-scale visualizations, video streaming to large numbers of distributed users, and high volume business transactions. We introduces the notion of conceptualizing a data stream as a set of relational database tables so that a scientist can request information with an SQL-like query. Transformation or computation that often needs to be performed on the data en-route can be conceptualized ascomputation performed onconsecutive views of the data, with computation associated with each view. The dQUOB system moves the query code into the data stream as a quoblet; as compiled code. The relational database data model has the significant advantage of presenting opportunities for efficient reoptimizations of queries and sets of queries. Using examples from global atmospheric modeling, we illustrate the usefulness of the dQUOB system. We carry the examples through the experiments to establish the viability of the approach for high performance computing with a baseline benchmark. We define a cost-metric of end-to-end latency that can be used to determine realistic cases where optimization should be applied. Finally, we show that end-to-end latency can be controlled through a probability assigned to a query that a query will evaluate to true

Year: 2000
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.