Skip to main content
Article thumbnail
Location of Repository

Overcomplete blind source separation by combining ICA and binary time-frequency masking

By Michael Syskind Pedersen, Deliang Wang, Jan Larsen and Ulrik Kjems

Abstract

A limitation in many source separation tasks is that the number of source signals has to be known in advance. Further, in order to achieve good performance, the number of sources cannot exceed the number of sensors. In many real-world applications these limitations are too strict. We propose a novel method for overcomplete blind source separation. Two powerful source separation techniques have been combined, independent component analysis and binary time-frequency masking. Hereby, it is possible to iteratively extract each speech signal from the mixture. By using merely two microphones we can separate up to six mixed speech signals under anechoic conditions. The number of source signals is not assumed to be known in advance. It is also possible to maintain the extracted signals as stereo signals. 1

Year: 2005
OAI identifier: oai:CiteSeerX.psu:10.1.1.135.7371
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.cse.ohio-state.edu/... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.