Skip to main content
Article thumbnail
Location of Repository

Bayesian Spectrum Estimation of Unevenly Sampled Nonstationary Data

By Yuan Qi, Thomas P. Minka and Rosalind W. Picard

Abstract

Spectral estimation methods typically assume stationarity and uniform spacing between samples of data. The non-stationarity of real data is usually accommodated by windowing methods, while the lack of uniformlyspaced samples is typically addressed by methods that “fill in ” the data in some way. This paper presents a new approach to both of these problems: we use a non-stationary Kalman filter within a Bayesian framework to jointly estimate all spectral coefficients instantaneously. The new method works regardless of how the signal samples are spaced. We illustrate the method on several data sets, showing that it provides more accurate estimation than the Lomb-Scargle method and several classical spectral estimation methods. 1

Publisher: MIT Media
Year: 2002
OAI identifier: oai:CiteSeerX.psu:10.1.1.135.6647
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://web.media.mit.edu/~yuan... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.