Skip to main content
Article thumbnail
Location of Repository

M.: Exploiting inference for approximate parameter learning in discriminative fields: An empirical study

By Sanjiv Kumar, Jonas August and Martial Hebert

Abstract

Abstract. Estimation of parameters of random field models from labeled training data is crucial for their good performance in many image analysis applications. In this paper, we present an approach for approximate maximum likelihood parameter learning in discriminative field models, which is based on approximating true expectations with simple piecewise constant functions constructed using inference techniques. Gradient ascent with these updates exhibits compelling limit cycle behavior which is tied closely to the number of errors made during inference. The performance of various approximations was evaluated with different inference techniques showing that the learned parameters lead to good classification performance so long as the method used for approximating the gradient is consistent with the inference mechanism. The proposed approach is general enough to be used for the training of, e.g., smoothing parameters of conventional Markov Random Fields (MRFs).

Year: 2005
OAI identifier: oai:CiteSeerX.psu:10.1.1.135.2981
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.cs.cmu.edu/~skumar/... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.