Skip to main content
Article thumbnail
Location of Repository

Preprocessing Chains for Fast Dihedral Rotations Is Hard or Even Impossible

By et al. Michael Soss


We examine a computational geometric problem concerning the structure of polymers. Wemodel a polymer as a polygonal chain in three dimensions. Each edge splits the polymer into two subchains, and a dihedral rotation rotates one of these subchains rigidly about the edge.The problem is to determine, given a chain, an edge, and an angle of rotation, if the motion can be performed without causing the chain to self-intersect. An \Omega (n log n) lower bound on thetime complexity of this problem is known. We prove that preprocessing a chain of n edges and answering n dihedral rotation queriesis 3sum-hard, giving strong evidence that \Omega (n2) preprocessing is required to achieve sublinearquery time in the worst case. For dynamic queries, which also modify the chain if the requested dihedral rotation is feasible, we show that answering n queries is by itself 3sum-hard, suggesting that sublinear query time is impossible after any amount of preprocessing

Year: 2002
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.