Skip to main content
Article thumbnail
Location of Repository

BLIND DECONVOLUTION OF NOISY BLURRED IMAGES VIA DISPERSION MINIMIZATION

By Cabir Vural and William A. Sethares

Abstract

In linear image restoration, the point spread function of the degrading system is assumed known even though this information is usually not available in real applications. As a result, both blur identification and image restoration must be performed from the observed noisy blurred image. This paper presents a computationally simple linear adaptive finite impulse response filter for blind image deconvolution. This is essentially a two-dimensional version of the Constant Modulus Algorithm that is well known in the field of blind equalization. The two-dimensional extension is shown capable of reconstructing noisy blurred images using partial aprioriinformation about the true image and the point spread function. The method is applicable to minimum as well as mixed phase blurs. Experimental results are provided. 1

Year: 2009
OAI identifier: oai:CiteSeerX.psu:10.1.1.135.2861
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://eceserv0.ece.wisc.edu/~... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.