Skip to main content
Article thumbnail
Location of Repository

Large deviations for the boundary driven symmetric simple exclusion process

By L. Bertini, A. De Sole and C. Landim G. Jona-Lasinio D. Gabrielli

Abstract

The large deviation properties of equilibrium (reversible) lattice gases are mathematically reasonably well understood. Much less is known in non–equilibrium, namely for non reversible systems. In this paper we consider a simple example of a non–equilibrium situation, the symmetric simple exclusion process in which we let the system exchange particles with the boundaries at two different rates. We prove a dynamical large deviation principle for the empirical density which describes the probability of fluctuations from the solutions of the hydrodynamic equation. The so called quasi potential, which measures the cost of a fluctuation from the stationary state, is then defined by a variational problem for the dynamical large deviation rate function. By characterizing the optimal path, we prove that the quasi potential can also be obtained from a static variational problem introduced by Derrida, Lebowitz, and Speer

Topics: Key words, Stationary non reversible states, Large deviations, Boundary driven lattice gases
Year: 2003
OAI identifier: oai:CiteSeerX.psu:10.1.1.135.2414
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.math.harvard.edu/~d... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.