Skip to main content
Article thumbnail
Location of Repository

SIGIR 2007 Proceedings Poster Varying Approaches to Topical Web Query Classification

By Steven M. Beitzel

Abstract

Topical classification of web queries has drawn recent interest because of the promise it offers in improving retrieval effectiveness and efficiency. However, much of this promise depends on whether classification is performed before or after the query is used to retrieve documents. We examine two previously unaddressed issues in query classification: pre versus post-retrieval classification effectiveness and the effect of training explicitly from classified queries versus bridging a classifier trained using a document taxonomy. Bridging classifiers map the categories of a document taxonomy onto those of a query classification problem to provide sufficient training data. We find that training classifiers explicitly from manually classified queries outperforms the bridged classifier by 48 % in F1 score. Also, a pre-retrieval classifier using only the query terms performs merely 11 % worse than the bridged classifier which requires snippets from retrieved documents

Topics: Categories and Subject Descriptors H.3.5 [Information Storage and Retrieval, Online Information Services – Web-based services General Terms Measurement, Reliability, Experimentation Keywords Query Classification, Web Search
Year: 2009
OAI identifier: oai:CiteSeerX.psu:10.1.1.134.5640
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://ir.iit.edu/publications... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.