Skip to main content
Article thumbnail
Location of Repository

Definition and Complexity of Some Basic Metareasoning Problems

By Vincent Conitzer and Tuomas Sandholm

Abstract

In most real-world settings, due to limited time or other resources, an agent cannot perform all potentially useful deliberation and information gathering actions. This leads to the metareasoning problem of selecting such actions. Decision-theoretic methods for metareasoning have been studied in AI, but there are few theoretical results on the complexity of metareasoning. We derive hardness results for three settings which most real metareasoning systems would have to encompass as special cases. In the first, the agent has to decide how to allocate its deliberation time across anytime algorithms running on different problem instances. We show this to be N P-complete. In the second, the agent has to (dynamically) allocate its deliberation or information gathering resources across multiple actions that it has to choose among. We show this to be N P-hard even when evaluating each individual action is extremely simple. In the third, the agent has to (dynamically) choose a limited number of deliberation or information gathering actions to disambiguate the state of the world. We show that this is N P-hard under a natural restriction, and PSPACE-hard in general

Year: 2003
OAI identifier: oai:CiteSeerX.psu:10.1.1.134.5082
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://arxiv.org/pdf/cs/030701... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.