Skip to main content
Article thumbnail
Location of Repository

Fault Tolerant Nano-Memory with Fault Secure Encoder and Decoder

By Helia Naeimi and Andre DeHon


We introduce a nanowire-based, sublithographic memory architecture tolerant to transient faults. Both the storage elements and the supporting ECC encoder and corrector are implemented in dense, but potentially unreliable, nanowirebased technology. This compactness is made possible by a recently introduced Fault-Secure detector design [18]. Using Euclidean Geometry error-correcting codes (ECC), we identify particular codes which correct up to 8 errors in data words, achieving a FIT rate at or below one for the entire memory system for bit and nanowire transient failure rates as high as 10 −17 upsets/device/cycle with a total area below 1.7 × the area of the unprotected memory for memories as small as 0.1 Gbit. We explore scrubbing designs and show the overhead for serial error correction and periodic data scrubbing can be below 0.02 % for fault rates as high as 10 −20 upsets/device/cycle. We also present a design to unify the error-correction coding and circuitry used for permanent defect and transient fault tolerance

Year: 2007
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.