Skip to main content
Article thumbnail
Location of Repository

Structure and motion from lines under affine projections

By Kalle Åström, Anders Heyden, Fredrik Kahl and Magnus Oskarsson

Abstract

In this paper we investigate the geometry and algebra of multiple projections of lines with affine cameras. Previously, the case of seven lines in three images has been studied. It was thought that this was the minimal data necessary for recovering affine structure and motion and that there are in general two solutions. It was also thought that these two solutions persist with more than seven lines. In this paper it is shown that the minimal cases are six lines in three images and five lines in four images. These cases are solved and it is shown that there are in general four solutions in both problems. Two almost minimal cases (seven lines in three images and six lines in four images) are solved using linear methods. Furthermore, it is shown that the solution is in general unique in these almost minimal cases. Finally, experiments are conducted on both simulated and real data in order to show the applicability of the theory. 1

Year: 1999
OAI identifier: oai:CiteSeerX.psu:10.1.1.134.1008
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.maths.lth.se/matema... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.