Location of Repository

A simple solution to the k-core problem

By Svante Janson and Malwina J. Luczak

Abstract

We study the k-core of a random (multi)graph on n vertices with a given degree sequence. We let n ! 1. Then, under some regularity conditions on the degree sequences, we give conditions on the asymptotic shape of the degree sequence that imply that with high probability the k-core is empty, and other conditions that imply that with high probability the k-core is non-empty and the sizes of its vertex and edge sets satisfy a law of large numbers; under suitable assumptions these are the only two possibilities. In particular, we recover the result by Pittel, Spencer andWormald [19] on the existence and size of a k-core in G(n, p) and G(n,m), see also Molloy [17] and Cooper [3]. Our method is based on the properties of empirical distributions of independent random variables, and leads to simple proofs

Topics: QA Mathematics
Publisher: Centre for Discrete and Applicable Mathematics, London School of Economics and Political Science
Year: 2006
OAI identifier: oai:eprints.lse.ac.uk:13800
Provided by: LSE Research Online
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.cdam.lse.ac.uk (external link)
  • http://eprints.lse.ac.uk/13800... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.