Skip to main content
Article thumbnail
Location of Repository

On Boolean combinations of definitive classifiers

By Martin Anthony


We consider the sample complexity of concept learning when we classify by using a fixed Boolean function of the outputs of a number of different classifiers. Here, we take into account the ‘margins’ of each of the constituent classifiers. A special case is that in which the constituent classifiers are linear threshold functions (or perceptrons) and the fixed Boolean function is the majority function. This corresponds to a ‘committee of perceptrons’, an artificial neural network (or circuit) consisting of a single layer of perceptrons (or linear threshold units) in which the output of the network is defined to be the majority output of the perceptrons. Recent work of Auer et al. studied the computational properties of such networks (where they were called ‘parallel perceptrons’), proposed an incremental learning algorithm for them, and demonstrated empirically that the learning rule is effective. As a corollary of the sample complexity result presented here, generalization error bounds are derived for this special case that provide further motivation for the use of this learning rule

Topics: QA Mathematics
Publisher: Centre for Discrete and Applicable Mathematics, London School of Economics and Political Science
Year: 2003
OAI identifier:
Provided by: LSE Research Online
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.