Article thumbnail

Local negative circuits and fixed points in non-expansive Boolean networks

By Adrien Richard


AbstractGiven a Boolean function F:{0,1}n→{0,1}n, and a point x in {0,1}n, we represent the discrete Jacobian matrix of F at point x by a signed directed graph GF(x). We then focus on the following open problem: Is the absence of a negative circuit in GF(x) for every x in {0,1}n a sufficient condition for F to have at least one fixed point? As result, we give a positive answer to this question under the additional condition that F is non-expansive with respect to the Hamming distance

Publisher: Elsevier B.V.
Year: 2011
DOI identifier: 10.1016/j.dam.2011.01.010
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://s3-eu-west-1.amazonaws... (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.