Balanced allocations: balls-into-bins revisited and chains-into-bins

Abstract

The study of balls-into-bins games or occupancy problems has a long history since these processes can be used to translate realistic problems into mathematical ones in a natural way. In general, the goal of a balls-into-bins game is to allocate a set of independent objects (tasks, jobs, balls) to a set of resources (servers, bins, urns) and, thereby, to minimize the maximum load. In this paper we show two results. First, we analyse the maximum load for the chains-into-bins problem where we have n bins and the balls are connected in n/l chains of length l. In this process, the balls of one chain have to be allocated to l consecutive bins. We allow each chain d i.u.r.\ bin choices. The chain is allocated using the rule that the maximum load of any bin receiving a ball of that chain is minimized. We show that, for d ≥ 2, the maximum load is (ln ln (n/l))/ln d +O(1) with probability 1-O(1/lnln(n/l)). This shows that the maximum load is decreasing with increasing chain length. Secondly, we analyse for which number of random choices d and which number of balls m, the maximum load of an off-line assignment can be upper bounded by one. This holds, for example, for m<0.97677 n and d=4

Similar works

Full text

thumbnail-image

LSE Research Online

redirect
Last time updated on 10/02/2012

This paper was published in LSE Research Online.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.