Article thumbnail

Tracking Tumor Colonization in Xenograft Mouse Models Using Accelerator Mass Spectrometry

By Nicholas R. Hum, Kelly A. Martin, Michael A. Malfatti, Kurt Haack, Bruce A. Buchholz and Gabriela G. Loots

Abstract

Abstract Here we introduce an Accelerator Mass Spectrometry (AMS)-based high precision method for quantifying the number of cancer cells that initiate metastatic tumors, in xenograft mice. Quantification of 14C per cell prior to injection into animals, and quantification of 14C in whole organs allows us to extrapolate the number of cancer cells available to initiate metastatic tumors. The 14C labeling was optimized such that 1 cancer cell was detected among 1 million normal cells. We show that ~1–5% of human cancer cells injected into immunodeficient mice form subcutaneous tumors, and even fewer cells initiate metastatic tumors. Comparisons of metastatic site colonization between a highly metastatic (PC3) and a non-metastatic (LnCap) cell line showed that PC3 cells colonize target tissues in greater quantities at 2 weeks post-delivery, and by 12 weeks post-delivery no 14C was detected in LnCap xenografts, suggesting that all metastatic cells were cleared. The 14C-signal correlated with the presence and the severity of metastatic tumors. AMS measurements of 14C-labeled cells provides a highly-sensitive, quantitative assay to experimentally evaluate metastasis and colonization of target tissues in xenograft mouse models. This approach can potentially be used to evaluate tumor aggressiveness and assist in making informed decisions regarding treatment

Topics: Medicine, R, Science, Q
Publisher: Nature Publishing Group
Year: 2018
DOI identifier: 10.1038/s41598-018-33368-0
OAI identifier: oai:doaj.org/article:89d8b76e2c354deaa78c2f71ef83b918
Journal:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://doaj.org/article/89d8b... (external link)
  • http://link.springer.com/artic... (external link)
  • https://doaj.org/toc/2045-2322 (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.