Location of Repository

Threshold functions for asymmetric Ramsey properties involving cliques

By Martin Marciniszyn, Jozef Skokan, Reto Spöhel and Angelika Steger
Topics: QA75 Electronic computers. Computer science
Publisher: Springer
Year: 2006
DOI identifier: 10.1007/11830924_42
OAI identifier: oai:eprints.lse.ac.uk:5815
Provided by: LSE Research Online
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://eprints.lse.ac.uk/5815/... (external link)
  • http://www.springerlink.com (external link)
  • http://eprints.lse.ac.uk/5815/ (external link)
  • Suggested articles

    Citations

    1. (1930). On a problem of formal logic. doi
    2. (1970). Graphs with monochromatic complete subgraphs in every edge coloring. doi
    3. (1976). V.: The Ramsey property for graphs with forbidden complete subgraphs.
    4. (1995). A.: Threshold functions for Ramsey properties. doi
    5. (1993). A.: Lower bounds on probability thresholds for Ramsey properties. In: Combinatorics, Paul Erd˝ os is eighty,
    6. (1992). B.: Ramsey properties of random graphs.
    7. (1998). Erd˝ os on graphs. A K Peters Ltd.,
    8. (1995). The Ramsey number R(3,t) has order of magnitude t 2/logt. doi
    9. (1997). Threshold functions for asymmetric Ramsey properties involving cycles. doi
    10. (1997). Szemer´ edi’s regularity lemma for sparse graphs. In: Foundations of computational mathematics (Rio de Janeiro, doi
    11. (1997). On K 4-free subgraphs of random graphs. doi
    12. (2000). Random graphs. doi
    13. (2005). A.: A probabilistic counting lemma for complete graphs. doi

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.