Skip to main content
Article thumbnail
Location of Repository

CENP-T-W-S-X Forms a Unique Centromeric Chromatin Structure with a Histone-like Fold

By Tatsuya Nishino, Kozo Takeuchi, Karen E. Gascoigne, Aussie Suzuki, Tetsuya Hori, Takuji Oyama, Kosuke Morikawa, Tatsuo Fukagawa and Iain McPherson Cheeseman


The multiprotein kinetochore complex must assemble at a specific site on each chromosome to achieve accurate chromosome segregation. Defining the nature of the DNA-protein interactions that specify the position of the kinetochore and provide a scaffold for kinetochore formation remain key goals. Here, we demonstrate that the centromeric histone-fold-containing CENP-T-W and CENP-S-X complexes coassemble to form a stable CENP-T-W-S-X heterotetramer. High-resolution structural analysis of the individual complexes and the heterotetramer reveals similarity to other histone fold-containing complexes including canonical histones within a nucleosome. The CENP-T-W-S-X heterotetramer binds to and supercoils DNA. Mutants designed to compromise heterotetramerization or the DNA-protein contacts around the heterotetramer strongly reduce the DNA binding and supercoiling activities in vitro and compromise kinetochore assembly in vivo. These data suggest that the CENP-T-W-S-X complex forms a unique nucleosome-like structure to generate contacts with DNA, extending the “histone code” beyond canonical nucleosome proteins.Kinship Foundation. Searle Scholars ProgramNational Institute of General Medical Sciences (U.S.) (Grant GM088313

Publisher: Elsevier
Year: 2011
DOI identifier: 10.1016/j.cell.2011.11.061
OAI identifier:
Provided by: DSpace@MIT
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.