Location of Repository

Spatial sensitivity of the Gravity Recovery and Climate Experiment (GRACE) time-variable gravity observations

By J. L Chen, C R Wilson, J S Famiglietti and M Rodell

Abstract

We analyze the spatial sensitivities of terrestrial water storage and geoid height changes determined from the time-variable gravity observed by the Gravity Recovery and Climate Experiment (GRACE) twin satellite mission. On the basis of 15 GRACE monthly gravity solutions, covering the period April 2002 to December 2003, we examine the effects of spatial smoothing at radii varying from 400 to 2000 km and conclude that a 800 km Gaussian smoothing radius is effective for GRACE-derived terrestrial water storage and produces the minimum RMS residuals over the land of the differences between GRACE results and estimated water storage change from a global land data assimilation system. For GRACE estimated geoid height change, the effective smoothing radius can go down to 600 km. When the annual (e.g., the sine and cosine) components are the primary concern, the effective spatial resolution can reach 600 and 400 km for GRACE estimated terrestrial water storage or geoid height change, respectively

Topics: Physical Sciences and Mathematics, geopotential theory and determination, ocean/earth/atmosphere/hydrosphere/cryosphere interactions, satellite geodesy: results, time variable gravity
Publisher: eScholarship, University of California
Year: 2005
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.escholarship.org/uc... (external link)
  • http://creativecommons.org/lic... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.