Location of Repository

Influence of land use, climate and topography on the fire regime in the Eastern Savannas of Colombia

By Milton Hernan Romero Ruiz


Changes in natural vegetation as a result of land use and fire are an important factor that contributes to loss of biodiversity and climatic change. More than 30% of the global land surface shows frequent burning particularly in the tropics. Even though natural savannas in Colombia are experiencing high impact due to land use, there has not been a systematic quantification of the change rate of land use/cover or fire occurrence. The Eastern Colombian Savannas represent around 6% of the savannas in South America. This study identifies the land use/ cover change (LUCC) patterns between three periods (1987-1988, 2000-2001 and 2006-2007) using Landsat and CBERS satellite images. The area burned between 2000-2009 using a novel regional algorithm tailored for MODIS data is quantified and validated. Results show that for the year 2000, 22% of the savanna ecosystems had been transformed, with flooded and high savannas being most affected. The annual rate of change from natural to non-natural between 1987- 2007 was -0.85%. The fire assessment showed that on average 2.75 +/- 0.5 million ha of the savannas burn each year, being highly variable as 3.4 million ha burned in 2002-2003 which was 1.9 million ha less than in 2005-2006. However, it was shown that during 2000-2009, 39% of the savannas never burned. Fires predominate in the high plain savannas, with lowest occurrence along the Andean foothills, in forested areas and croplands. Based on predictive models implementing statistical methods, it was shown that in the occurrence of fires, the climate variables are important but only predict a 44%. The best predictive model with an accuracy of 78% includes variables such as climate, land use/ cover, land form and topography. This study presents the first complete map at regional scale for almost two decades of LUCC and a decade of fire activity in Colombian savannas

Publisher: University of Leicester
Year: 2011
OAI identifier: oai:lra.le.ac.uk:2381/9605

Suggested articles



  1. (2004a). “A global inventory of burned areas at 1 km resolution for the year 2000 derived from SPOT VEGETATION data.”
  2. (2010). A biogeographic model of fire regimes in Australia: current and future implications.”
  3. (1999). A comparative evaluation of NOAA/AVHRR vegetation indices for fire scar detection and mapping in the Mediterranean type region.”
  4. (2005). A comparison of forest change detection methods and implications for forest management.
  5. (2002). A comparison of methods for monitoring multitemporal vegetation changes using Thematic Mapper Imagery.” Remote Sensing of
  6. (2001). A consistent wildland fire risk terminology is needed.” In: Fire Management Today (Washington Forest Service USDA) 61(4): 28-33. Available at:
  7. (1997). A Landsat MSS derived fire history of Kakadu National Park monsoonal northern Australia 1980-94. Seasonal extend, frequency and patchiness.”
  8. (1985). A Landscape Ecological Approach for Grazing Development: A Case in the Colombian Llanos Orientales,
  9. (2003). A method for object-oriented land cover classification combining Landsat data and aerial photographs.”
  10. (1982). A method for satellite identification of surface temperature fields of sub-pixel resolution.”
  11. (2008). A new, global, multi-annual (2000-2007) burnt area product at 1 km resolution.”
  12. (1983). A quantitative method to test for consistency and correctness in photointerpretation.”
  13. (2001). A remote sensing-GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta,
  14. (2001). A review of AVHRR based active fire detection algorithms. Principles limitations and recommendations. In: Global and regional vegetation fire monitoring from space. Planning a coordinated international efforts.
  15. (2003). A review of current space-based fire monitoring in Australia and the GOFC/GOLD program for international coordination.”
  16. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models.”
  17. (1995). A review of vegetation indices.”
  18. (1998). A segmentation approach to classification of remote sensing imagery.”
  19. (1994). A simple method for fire growth monitoring using AVHRR channel 3 data.”
  20. (2005). Aboveground forest biomass and the global carbon balance.
  21. (2000). Accuracy assessment for the U.S. Geological Survey Regional Land-Cover Mapping Program: New York and New Jersey Region”. Photogrammetric Engineering and Remote Sensing
  22. (2007). Accuracy assessment of land cover maps in sub tropical countries: a sampling design for the Mexican National Forest Inventory”.
  23. (2007). Advances in improving agricultural profitability and overcoming land degradation in savanna and hillside agroecosystems of tropical America.
  24. (2002). Advantages and drawbacks of NOAAAVHBRR and SPOT-VGT for burnt area mapping in a tropical savanna ecosystem.”
  25. (2008). Agricultural activities, management and conservation of natural resources of Central and South American savannas. IX simposion Nacional Cerrado, II Simposio Internacional Savanas Tropicais,
  26. (2001). Agroecología y biodiversidad de la sabana en los llanos orientales de Colombia. Centro de agricultura tropical -
  27. (1999). An algorithm for extracting burned areas from time series of AVHRR GAC data applied at a continental scale.” Remote Sensing of
  28. (2002). An assessment of the accuracy of DOLA’s northern Australia NOAA-AVHRR fire affected area (FAA) map products. Camberra, Deparment of the Environment and Heritage.
  29. (2001). An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah.”
  30. (2006). An improved algorithm for small and cool fire detection using MODis data: A preliminary study in the southeastern United Stated.” Remote Sensing of Environment
  31. (2007). Application of GIS and logistic regression to fossil pollen data in modelling present and past spatial distribution of the Colombian savanna.”
  32. (1990). Application of SPOT data for regional growth analysis and local planing.” Photogrammetric Engineering and Remote Sensing
  33. (1989). Applied logistic regression.
  34. (1993). Artificial neural networks for land-cover classification and mapping.”
  35. (2004). As Earth’s testimonies tell’: wilderness conservation in a changing world.
  36. (2005). Assessing Fire Potential in a Brazilian Savanna Nature Reserve1.
  37. (1988). Assessing forest damage in highelevation coniferous forest in Vermont and New Hampshire using Thematic Mapper data.”
  38. (2002). Assessment of difference spectral indices in the red-near-infrared spectral domain for burned land discrimination.”
  39. (2005). Assessment of multitemporal compositing techniques of MODis and AVHRR images for burned land mapping.”
  40. (2002). Atmospheric correction of MODis data in the visible to middle infrared: first results.”
  41. (1997). Automatic mapping of surfaces affected by forest fire in Spain using AVHRR NDVI composite image data.”
  42. (2006). Available at: www.fire.org/medcia/la.final.pdf. 30
  43. (2009). Avances en el análisis del componente ecológico en el marco de la construcción del mapa de aptitudes de áreas para el cultivo de palma de aceite en Colombia, programa de apoyo al Sina II. Instituto de Hidrología, Metereología y Estudios Ambientales:
  44. (1989). AVHRR image navigation: summary and review.” Photogrammetric Engineering and Remote Sensing
  45. (2006). Biodiversidad y actividades productivas. In: Plan de acción en biodiversidad para la
  46. (1996). Biodiversity and Savanna Ecosystem Processes: A Global Perspective.
  47. (1992). Biomass burnig in west African savannas. In: Global Biomass Burning Atmospheric, Climatic and Biospheric
  48. (1979). Biomass burning as a source of atmospheric gases
  49. (1990). Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles.”
  50. (1992). Biomass burning: its history, use and distribution and its impact on environmental quality and global climate.
  51. (2004). Boreal forest fire burn less intensely in Russia that in
  52. (2002). Burning the seasonal mosaic. Preventitive burning strategies in the wooded savanna of sourthern
  53. (1997). Calibrating photo-interpreted forest cover types and relative species compositions to their ground expectations.”
  54. (1996). Calibration based models for correction of area estimates derived from coarse resolution land cover data.”
  55. Cambio Climático 2007: Mitigación del cambio climático. In: Contribucion del grupo de trabajo III al cuarto informe de evaluación del IPCC. Cambrige,
  56. (2005). Caracterización de los grupos humanos rurales de la cuenca hidrográfica del Orinoco en Colombia. Bogotá, Instituto de Investigaciones en Recursos Biologicos Alexander von Humboldt.
  57. (2003). Carbon emissions from fires in tropical and subtropical ecosystems.”
  58. (2004). Cartografía global de áreas quemadas en América Latina: experiencias del proyecto AQL
  59. (2007). Challenges to estimating carbon emissions from tropical deforestation.
  60. (1994). Change detection for monitoring forest defoliation.”
  61. (1992). Characterization of the spatio-temporal patterns of global fire activity using satellite imagery for the period
  62. Characterizing interannual variations in global fire calendar using data from Earth observin satellites.
  63. (2005). Characterizing the surface heterogeneity of fire effects using multi-temporal reflective wavelengths data.”
  64. (2007). Cohen’s kappa and classification table metric 2.1. An arcView3x extension for accuracy assessment of spatiallyexplicit models.” Available at: http://www.jennessent.com/arcview/kappa_ stats.htm.
  65. (2008). Comparacion de metodologias para el mapeo de de la cobertura y uso del suelo en el sureste de Mexico. Investigaciones Geograficas, Boletín del Instituto de Geografia,
  66. (1993). Comparative ecology of African and South American arid to sub-humid ecosystems.
  67. (2005). Comparison of burned area estimated derived from SPOT-VEGETATION and Landsat ETM+ data in Africa: Influence of spatial patterns and vegetation type.”
  68. (2000). Comparison of three AVHRR based fire detection algorithms for interior Alaska.” Remote Sensing of
  69. (2005). Computer processing of remotely-sensed images. An introduction.
  70. (1996). Contextual and multiple-threshold algorithms for regional active fire detection with AVHRR data.”
  71. (2008). Defining a fire year for reporting and analysis of global interannual fire variability.
  72. (2007). Detection of burned peat swamp forest in a heterogeneous tropical landscape: A case stude of the Klias Peninsula, Sabah Malasi.” Landscape and Urban Planning
  73. (1989). Detection of change in leaf water content using near and middle-infrared reflectance.”
  74. (1995). Determination of biomass burning emission factors: Methods and results.
  75. (1996). Developing a global vegetation fire monitoring system for global change studies: a framework. In: Biomass Burning and Global
  76. (1978). Diagnóstico y definición de prioridades para la conservación y manejo de la biodiversidad en la Orinoquía colombiana. Cali, World Wildlife Foundation.
  77. Digital change detection methods in ecosystem monitoring: A review.”
  78. (1989). Digital change detection techniques using remotely sensed data.”
  79. (2000). Do spatial effects play a role in the spatial distribution of desert-dwelling Acacia raddiana?
  80. (2003). Dynamics of land-use and land-cover change in tropical regions.”
  81. (1990). Ecología comparada de ecosistemas de sabanas en America del Sur. In: Las sabannas americanas. Aspecto de su biogeografía y
  82. (2007). Ecological and spatial modelling: Mapping ecosystems, landscape changes and plant species distribution in Llanos del Orinoco Venezuela. In: School for Production Ecology and Resource Conservation (PE&RC).
  83. (1984). Ecology of neotropical savannas.
  84. (1982). Ecology of tropical savannas.
  85. (2003). Effect of wavelength selection on characterization of fire size and temperature.”
  86. (2003). Ensayo sobre tipología de suelos Colombianos - Énfasis en génesis y aspectos ambientales.”
  87. (2006). Estado del conocimiento sobre peces dulceacuícolas en Colombia. In: Informe nacional sobre el avance en el conocimiento e información sobre biodiversidad
  88. (2001). Estimación del estado hídrico de la vegetación a partir de sensores de alta y baja resolución.”
  89. (2008). Estudio comparativo de índices espectrales para la cartografía de áreas quemadas con imágenes MODis.”
  90. (1999). Estudio de la composición y estructura de las comunidades de macrófitas acuáticas asociadas a dos sistemas lénticos en el municipio de Paz de Ariporo, departamemento de Casanare.
  91. (2004). Estudio de las careacterísticas físicas y geométricas de la llama en los incendios forestales. Departamento de Ingeniería Química. Cataluña, Universidad Politécnica de Cataluña.
  92. Estudio general de suelos de la comisaria del Vichada. Bogotá, Colombia, Instituto Geografico Agustin Codazzi, Subdireccion de Agrología.
  93. (1997). Etter A (1998a) Ecosistemas de Sabanas. In: Informe Nacional sobre el Estado de la Biodiversidad Colombia
  94. (1990). Exceptional fire event in the tropics:
  95. (2003). Experimental comparison of four remote sensing techniques to map tropical savanna fire scar using Landsat TM imagery.”
  96. (2000). Extent, distribution and ecological role of fire in Russian forest. In: Fire climate change and carbon cycling in the boreal forest, series ecological studies.
  97. (1998). FARSITE: Fire Area Simulator-model development and evaluation.
  98. (2005). Fearnside
  99. Fearnside (2005). “Above-ground biomass and the fate of carbon after burning in the savannas of Roraima,
  100. (2003). Fire and savanna landscape in northern Australia. Regional lessons and global challenger.”
  101. (1975). Fire and the Australian flora: A review.
  102. (2005). Fire as a global ‘herbivore’the ecology and evolution of flammable ecosystems.
  103. (1999). Fire detection and fire growth monitoring using satellite data. In: Remote sensing of large wildfires in the European mediterranean basin.
  104. (1999). Fire effects on belowground sustainability: a review and synthesis.
  105. (2002). Fire impact on vegetation in Central Africa. A remote sensing based statistical analysis.”
  106. (1999). Fire in southern African woodlands: Origins, impacts, effects, and control.
  107. (1990). Fire in the ecology of the Brazilian cerrado. In:
  108. (2009). Fire intensity, fire severity and burn severity: a brief review and suggestged usage.”
  109. (2004). Fire Monitoring and Mapping Implementation Team.” Available at: http://gofc-fire.umd.edu.index.asp.
  110. (2008). Fire, climate change and biodiversity in Amazonia: a Late-Holocene perspective.”
  111. (1996). Fire, Climate change and carbon cycling in Alaskan boreal forests.
  112. (2000). Fires and land cover change in the tropics: A remote sensing analysis at the landscape scales.”
  113. (2006). Flora and vegetation of the venezuelan llanos: A Review. In: Neotropical Savannas and Seasonally
  114. (1988). Fuels and fire at savannas-gallery forest boundaries in southeastern Venezuela.”
  115. (2005). Gallery forest types and their environmental correlates in a Colombian savanna landscape.”
  116. (1992). Geomorfología aplicada a levantamentos edafológicos y zonificación física de las tierras.” Instituto Geografico Agustin Codazzi:
  117. (2005). GLC2000: a new approach to global land cover mapping from Earth observation data.”
  118. (2007). Global and regional drivers of accelerating
  119. (2008). Global BurnedLand estimation in Latin America using MODis composite data.”
  120. (2006). Global carbon emissions from biomass burning in the 20th century.”
  121. (2008). Global characterization of fire activity: toward defining fire regimes from Earth observation data.”
  122. (2005). Global consequences of land use.”
  123. (2006). Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors.
  124. (2005). Global estimation of burnt areas using MODis active fire observations.” Atmosphere Chemistry Physic Discuss.
  125. (2000). Global spatial and temporal distribution of vegetation fire as determined from satellite observations.”
  126. (2004). Global wildland fire emission model (GWEM), evaluating the use of global area burnt satellite data.”
  127. (2005). Historia del uso reciente de tierras de la sabana de América del Sur. Estudio de caso en sabanas del
  128. (1981). Identification of subresolution high temperature sources using a thermal IR sensor.” Photogrammetric Engineering and Remote Sensing
  129. (2000). Impacts of biomass burning on tropospheric CO, NOx and O3.
  130. (2004). Informe Anual sobre el Estado del Medio Ambiente y los Recursos Renovables en Colombia.
  131. (2006). Informe nacional sobre el estado de avance en el conocimiento y la información de la biodiversidad (1998-2004).
  132. Informe sobre el estado de la biodiversidad en Colombia 2007-2008: piedemonte orinoquense, sabanas y bosques asociados al norte del río Guaviare. Instituto de Investigaciones en Recursos Biologicos “Alexander von Humboldt”.
  133. (2006). Inhibition of Amazon deforestation and fire by parks and indigenous lands.
  134. (2003). Interannual changes of active fire detectability in North America from long term records of the advanced very high resolution radiometer.”
  135. (1995). Interpolating mean rainfall using thin plate smoothing splines.”
  136. (1992). Introduction: global biomass burning: atmospheric climatic, and biospheric implications. In: Global Biomass Burning, Atmospheric, Climatic and Biospheric
  137. (2000). Is space necessary? Interference competition and limits to biodiversity.
  138. Justice (2002b). “Burned area mapping using multi-temporal moderate spatial resolution data - a bidirectional reflectance model based expectation approach.”
  139. (1989). Kwarteng
  140. (2002). La Anisotropía de la BRDF: Una nueva signatura de las cubiertas vegetales.
  141. (2010). Lan d use changes (1970-2020) and carbon emission in the Colombia Llanos. In
  142. Land change in the Brazilian Savanna (Cerrado), 1986-2002: Comparative analysis and implications for land-use policy.” Land Use Policy
  143. (2003). Land cover change monitoring with classification trees using Landsat TM and ancillary data.”
  144. (2003). Land cover change over the last three centuries due to human activities: The availability of new global data set.”
  145. (2000). Land cover mapping of large areas from satellites: status and research priorities.”
  146. (1985). Land in Tropical America, A guide to climatic, landscape and soils for agronomists. In: Amazonia, the Andean Piedmont, Central Brazil and Orinoco.
  147. (2003). Land use and vegetation fires
  148. (2002). Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling.”
  149. (1990). Land use change detection based on multi-date imagery from different satellite sensor systems.”
  150. (2008). Land use/cover changes using Landsat TM/ETM images in a tropical and biodiverse mountainous area of central-eastern Mexico.”
  151. (2006). Landscape assessment: Sampling and analysis methods. In: Usda, Forestal Service. Rocky Mountain Research Station General
  152. (2007). Las aves de los Llanos de la Orinoquía.
  153. (2004). Lessons to be learned from the comparison of three satellite derived biomass burning product.”
  154. (2006). Living with fire-sustaining ecosystems & liverlihoods through integrated fire management.
  155. (1995). Locating and estimating the areal extent of wildfired in Alaskan boreal forest using multiple-season AVHRR NDVI composite data.”
  156. (2007). Management and conservation of dry forest ecosystems, ecological Park Kurt-Beer.” Lyona a
  157. (2001). Management effects on carbon stocks and fluxes across the Orinoco savannas.” Forest,
  158. Mapa de cobertura de la tierra de la cuenca Magdalena-Cauca: Metodología CORINE Land Cover adaptada para Colombia a escala 1:100.000.
  159. (1995). Melinotte
  160. (1995). Methodology for estimating burned area from AVHRR reflectance data.”
  161. (2001). Methods of mapping surfaces burned in vegetation fires. In: Global and regional vegetation fire monitoring from space, planning a coordinated international
  162. (2004). Minimum recruitment frequency in
  163. (2004). Mitigating greenhouse gas emissions from tropical agriculture: Scope and research priorities.
  164. (2006). Modeling the conversion of Colombian lowland ecosystems since 1940: drivers, patterns and rates.”
  165. (2004). Modelling and sensibility analysis of fire emission in southern Africa during SAFARI
  166. (1994). Monitoreamiento orbital das queimadas no Brasil.
  167. (1995). Monitoring ecosystem response to global change: multitemporal remote sensing analyses. In: Anticipated effects of a changing global environment in Mediterranean type ecosystems.
  168. (1999). Monitoring land-cover changes: a comparison of change detection techniques.”
  169. (1974). Monitoring the vernal advancement and retrogradation (Green wave effect) of natural vegetation.
  170. (2003). Monthly burned area and forest fire carbon emission estimates for the Russian Federation from SPOT VGT.” Remote Sensing of
  171. (2000). Multi-attribute vegetation maps of forest services lands in California supporting resource management decisions”, Photogrammetric Engineering and Remote Sensing
  172. (1995). Multispectral remote sensing of biomass burning in West Africa.”
  173. (1999). Multitemporal active fire based burn scar detection algorithm.”
  174. (2006). Neotropical Savannas and Seassonally Dry Forest.
  175. (1990). Nitrogen-use efficiency for growth in a cultivated African grass and a native South American pasture grass.
  176. (1993). Nutrient and organic matter dynamics in tropical ecosistems. In: Fire in the environment: the ecological, atmospheric and climatic importance of vegetation fires.
  177. (1999). Paisajes fisiográficos de Orinoquia-Amazonia
  178. (2006). Performance of a burned-area index (BAIM) for mapping mediterranean burned scars from MODis data.” In:
  179. (2002). Positive feedbacks of fire, climate, and vegetation and the conversion of tropical savanna.
  180. (2005). Potencialidad de los índices de vegetación para la discriminación de coberturas forestales. In: Actas del III Congreso Forestal Argentino y Latinoamericano, Corrientes, Argentina C.D. 6-9 de septiembre de
  181. (1998). Potential global fire monitoring from EOS-MODis.”
  182. (2001). Pre-parcel land use classification in urban areas applying a rule-based techniques.”
  183. (1991). Predicting behaviour and size of crown fires in the northern rocky mountains. USDA For.
  184. (2001). Predicting land-cover and land-use change in the urban fringe: A case in Morelia city,
  185. (2001). Prescribed fire in oak savanna: Fire frequency effects on stand structure and dynamics.
  186. (1991). Problems in global fire evaluation - Is remote sensing the solution?.
  187. Production of Landsat ETM+ reference imagery of burned areas within Southern African Savannahs: Comparison of methods and application to MODis.”
  188. (2006). Productivity and carbon fluxes of tropical savannas.”
  189. (2003). Protocol for Accuracy Assessment of Ecosystem Maps.
  190. (2005). Prototyping a global algorithms for systematic fire-affected area mapping using MODis time series data.” Remote Sensing of Environment
  191. (1979). Proyecto radargramético del Amazonas: La Amazonía colombiana y sus recursos
  192. (1966). Reconocimiento edafológico de los Llanos Orientales de Colombia. La Vegetación Natural y la Ganadería en los Llanos Orientales.
  193. (2007). Reconstruction of fire spread within wildland fire events in Northern Eurasia from the MODis active fire product.”
  194. (1995). Región Orinoquía. In: Colombia Diversidad Biótica.
  195. (1994). Remote sensing and image interpretation.
  196. (1997). Remote sensing of aerosol properties over oceans from EOS-MODis.”
  197. (1998). Remote sensing of biomass burning in tropical regions: Sampling issues and multisensor approach.”
  198. (2003). Remote sensing of burned areas in tropical savannas.”
  199. (1997). Remote sensing of fires in southern Africa during the SAFARI
  200. (2010). Remote sensing of global savanna fire occurrence, extent, and properties. In
  201. (2000). Remote sensing of the environment: An Earth resource perspectives. Upper Saddle River,
  202. (2005). Remote sensing sensitivity to fire severity and fire recovery.
  203. (2006). Remote sensing techniques to assess active fire characteristics and post-fire effects.”
  204. (1997). Remote Sensing: Principles and Interpretation.
  205. (2003). SAFARI
  206. (1996). Satellite monitoring of vegetation fires on a multi-annual basis at continental scale in Africa. In: Biomass, Burning and Global Change
  207. (2000). Savanna fires in east-central Senegal: Distribution, patterns, resource management and perceptions.”
  208. (1995). Signal detection theory and ROC analysis in psychology and diagnostics: Collected papers.
  209. (2007). Simulation approaches for burn severity estimation using remotely sensed images.”
  210. (2007). Smoke plume detection in the eastern United States using MODis.”
  211. (1992). Soil and water conservation in Sub-Sahara Africa. Amsterdam, Centre for Development Cooperation Services Free 110.
  212. (2002). Some aspects of tree=grass dynamic in Queensland’s grazing lands.”
  213. (2009). Southern Africa validation of the MODis, L3JRC, and GlobCarbon Burned-Area Products.”
  214. (2010). Spatial an temporal variability of fires in relation to ecosystems, land tenure and rainfall in savannas of
  215. (2010). Spatial Explicit Modeling of Savanna Processes.
  216. (2005). Spatiotemporal problems with detecting and mapping mosaic fires regime with coarse-resolution satellite data in savannas environment.”
  217. (2005). Spatiotemporal problems with detecting and mapping mosaic fires regimes with coarse-resolution satellite data in savanna environments.”
  218. (2004). Spectral indices and fire behaviour simulation for FIRE risk assessment in savannas ecosystems “
  219. (2003). Standardizing the calculation of the annual rate of deforestation.”
  220. (2001). Terrestrial ecoregions of the world: A new map of live on
  221. (2005). The application of GIS-baed logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains,
  222. (1971). The Cerrado vegetation of Brazil.
  223. (1955). The classification of tropical
  224. (1997). The development and structure of the Canadian forest fire weather index system. In: Forestry
  225. (1995). The effects of brush fire on vegetation: The Aubreville fire plots after 60 years.”
  226. (2003). The GBA2000 initiative: Developing a global burned area database from SPOT-VEGETATION imagery.”
  227. (2004). The global distribution of ecosystems in a world without fire.”
  228. (2000). The Global Fire Product: dialy fire occurrence form Abril
  229. (2002). The influence of land use change and landscape dynamics on the climate system: relevance to climate change policy beyond the radiative effect of greenhouse gases.”
  230. (2008). The invasive grass, Melinis minutiflora, inhibits tree regeneration in a Neotropical savanna.
  231. (1998). The MODerate resolution imaging spectroradiometer (MODis): Land remote sensing for global change research.”
  232. (2002). The MODis fire products.”
  233. (2002). The MODis fire products.” Remote Sensing of
  234. (1999). The nature and diversity of neotropical savanna vegetation with particular reference to the Brazilian cerrados.”
  235. (2006). The utility of satellite fire product accuracy information-perspectives and recommendations from the southern Africa fire network.”
  236. (2002). Towards an operational MODis continuous field of percent tree cover algorithm: examples using AVHRR and MODis data.”
  237. (2002). Towards operational monitoring of terrestrial systems by moderate-resolution remote sensing.”
  238. (2004). Trends in fire patterns in a southern African savanna under alternative land use practices.” Agriculture, Ecosystems and Environment
  239. (1967). Tropical savannas vegetation of the
  240. (2004). Understanding and managing the global carbon cycle.
  241. (2006). Use of a radiative transfer model to simulate the post-fire spectral response to burn severity.”
  242. (2002). Using remote sensing and GIS to analyse land cover change and its impacts on regional sustainable development.
  243. (2006). Utilizar. In: Plan de Acción en Biodiversidad de la Cuenca del Orinoco,
  244. (2004). Validation and calibration of Canada wide coarse resolution satellite burned areas maps.” Photogrammetric Engineering and Remote Sensing
  245. (2006). Validation of active fire detection from moderate resolution satellite sensors: the MODis example in Northern Eurasia.”
  246. (2005). Validation of the MODis active fire product over southern Africa with Aster data.”
  247. (2005). Vegetation dynamics after fire opportunities of the combined used of fire detection and ecological indices. A study case in west
  248. (1997). Vegetation fire in mainland southeast Asia: spatio-temporal of AVHRR 1 km data for the 1992/03 dry season. Luxembourg, European Commission.
  249. (2005). Vegetation fire in the savannas of the Llanos
  250. (1995). Weather information management system user’s guide
  251. (2009). What Limits Fire?: An examination of drivers of burnt area in sub-equatorial Africa.
  252. (2001). What’s wrong with pixels?: Some recent developments interfacing remote sensing and GIS.”
  253. (1993). Why burn the bush? Social approaches to bush fire management in
  254. (1993). Wildfire management in forests and other vegetation: a global perspectvie.”
  255. Zonificación de los conflictos de uso de la tierra en Colombia.

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.