Evolutionary topology optimization for temperature reduction of heat conducting fields

Abstract

This paper aims at developing an efficient finite element based computational procedure for the topology design of heat conducting fields. To evaluate the temperature change in a specific position, due to varying the conducting material distribution in other regions, a discrete temperature sensitivity is derived for an evolutionary topology optimization method. In the topology optimization of the conducting fields, the thermal conductivity of an individual finite element is considered as the design variable. By removing or degenerating the conductive material of the elements with the most negative sensitivity, the temperature objective at the control point can be most efficiently reduced. Illustrative examples are presented to demonstrate this proposed approach

Similar works

Full text

thumbnail-image

ResearchOnline@JCU

redirect
Last time updated on 27/02/2014

This paper was published in ResearchOnline@JCU.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.