Reconciliation of classical and reacted-site probability approaches to allowance for ligand multivalence in binding studies

Abstract

The objective of this investigation is to engender greater confidence in the validity of binding equations derived for multivalent ligands on the basis of reacted-site probability theory. To that end, a demonstration of the theoretical interconnection between expressions derived by the classical stepwise equilibria and reacted-site probability approaches for univalent ligands is followed by the use of the traditional stepwise procedure to derive binding equations for bivalent and trivalent ligands. As well as demonstrating the unwieldy nature of the classical binding equation for multivalent ligand systems, that exercise has allowed numerical simulation to be used to illustrate the equivalence of binding curves generated by the two approaches. The advantages of employing a redefined binding function for multivalent ligands are also confirmed by subjecting the simulated results to a published analytical procedure that has long been overlooked. Copyrigh

Similar works

Full text

thumbnail-image

University of Queensland eSpace

redirect
Last time updated on 21/02/2014

This paper was published in University of Queensland eSpace.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.