Skip to main content
Article thumbnail
Location of Repository

A novel selective 11b-hydroxysteroid dehydrogenase type 1 inhibitor prevents human adipogenesis.

By I.J Bujalska, L.L Gathercole, J W Tomlinson, C Darimont, J Ermolieff, A.N Fanjul, P.A Rejto and P M Stewart

Abstract

Glucocorticoid excess increases fat mass, preferentially within omental depots; yet circulating cortisol concentrations are normal in most patients with metabolic syndrome (MS). At a pre-receptor level, 11b-hydroxysteroid dehydrogenase type 1 (11b-HSD1) activates cortisol from cortisone locally within adipose tissue, and inhibition of 11b-HSD1 in liver and adipose tissue has been proposed as a novel therapy to treat MS by reducing hepatic glucose output and adiposity. Using a transformed human subcutaneous preadipocyte cell line (Chub-S7) and human primary preadipocytes, we have defined the role of glucocorticoids and 11b-HSD1 in regulating adipose tissue differentiation. Human cells were differentiated with 1.0 mM cortisol (F), or cortisone (E) with or without 100 nM of a highly selective 11b-HSD1 inhibitor PF-877423. 11b-HSD1 mRNA expression increased across adipocyte differentiation (P!0.001, nZ4), which was paralleled by an increase in 11b-HSD1 oxo-reductase activity (from nil on day 0 to 5.9G1.9 pmol/mg per h on day 16,P!0.01, nZ7). Cortisone enhanced adipocyte differentiation; fatty acid-binding protein 4 expression increased 312-fold (P!0.001) and glycerol-3-phosphate dehydrogenase 47-fold (P!0.001) versus controls. This was abolished by co-incubation with PF-877423. In addition, cellular lipid content decreased significantly. These findings were confirmed in the primary cultures of human subcutaneous preadipocytes. The increase in 11b-HSD1 mRNA expression and activity is essential for the induction of human adipogenesis. Blocking adipogenesis with a novel and specific 11b-HSD1 inhibitor may represent a novel approach to treat obesity in patients with MS

Topics: R Medicine (General)
Publisher: Society for Endocrinology
Year: 2008
OAI identifier: oai:eprints.bham.ac.uk:119

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.