Location of Repository

Secant Dimensions of Minimal Orbits

By Karin Baur, Jan Draisma and Willem de Graff


We present an algorithm for computing the dimensions of higher secant varieties of minimal orbits. Experiments with this algorithm lead to many conjectures on secant dimensions, especially of Grassmannians and Segre products. For these two classes of minimal orbits, we also point out a relation between the existence of certain codes and non-defectiveness of certain higher secant varieties.Second named author supported by the Netherlands Organisation for Scientific Research, through mathematics cluster DIAMANT

Year: 2006
OAI identifier: oai:lra.le.ac.uk:2381/4265

Suggested articles



  1. (2005). a GAP package, version 1.1,
  2. (1999). Adjoint varieties and their secant varieties. doi
  3. (2003). An algorithm to compute the canonical basis of an irreducible module over a quantized enveloping algebra. doi
  4. (1994). Bases for quantum Demazure modules. In Representations of groups doi
  5. (1988). Determinantal rings, doi
  6. (1968). Groupes et Alge`bres de Lie,
  7. (2004). Higher secant varieties of the minimal adjoint orbit. doi
  8. (1972). Introduction to Lie Algebras and Representation Theory. doi
  9. (1992). La me´thode d’Horace e´clate´e: Application a` l’interpolation en degre´ quatre. doi
  10. (1996). Lectures on Quantum Groups, doi
  11. (1991). Linear Algebraic Groups. doi
  12. (1999). On apolarity and generic canonical forms. doi
  13. (1995). Polynomial interpolation in several variables.
  14. (2000). Secant varieties of adjoint varieties: Orbit decomposition. doi
  15. (2005). Secant varieties of grassmann varieties. doi
  16. (1988). Singularite´s imposables en position ge´ne´rale a` une hypersurface projective.
  17. (1911). Sulle Vk per cui la variet degli Sh(h + 1)-seganti ha dimensione minore dell’ ordinario. doi
  18. (1993). Tangents and secants of algebraic varieties., volume 127 of Translations of Mathematical Monographs.

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.