Xenogeneic regulation of the bacterial transcription machinery

Abstract

The parasitic life cycle of viruses involves the obligatory subversion of the host's macromolecular processes for efficient viral progeny production. Viruses that infect bacteria, bacteriophages (phages), are no exception and have evolved sophisticated ways to control essential biosynthetic machineries of their bacterial prey to benefit phage development. The xenogeneic regulation of bacterial cell function is a poorly understood area of bacteriology. The activity of the bacterial transcription machinery, the RNA polymerase (RNAP), is often regulated by a variety of mechanisms involving small phage-encoded proteins. In this review, we provide a brief overview of known phage proteins that interact with the bacterial RNAP and compare how two prototypical phages of Escherichia coli, T4 and T7, use small proteins to 'puppeteer' the bacterial RNAP to ensure a successful infection

Similar works

Full text

thumbnail-image

Spiral - Imperial College Digital Repository

redirect

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY licen