Kvadratično programiranje i linearna zadaća komplementarnosti

Abstract

Linearna zadaća komplementarnosti je sjajan kontekst u kojem se mogu prikazati pojmovi iz linearne algebre i teorije matrica pa smo se na početku rada dotakli osnovnih pojmova i rezultata vezanih za matrice, konkretno pozitivno definitne i semidefinitne matrice. Osim toga, prisjetili smo se još pokojeg rezultata o konveksnim kvadratičnim funkcijama koji su nam pomogli u razumijevanju zadaće kvadratičnog programiranja. Prije uspostavljanja veze između zadaće kvadratičnog programiranja i linearne zadaće komplementarnosti, pozabavili smo se uvjetima optimalnosti prvog reda, odnosno izveli smo Karush-Kuhn-Tuckerove uvjete koji su ključno vezivo za izgradnju mosta među spomenutim zadaćama. Kako mnogo toga u linearnoj zadaći komplementarnosti počiva na ideji komplementarnog konusa, bilo je neizbježno zastati i prokomentirati zadaću u terminima konusa te demonstrirati to primjerom. Glavni dio poglavlja o linearnoj zadaći komplementarnosti je svakako rasprava o egzistenciji i broju rješenja. Isprva smo se bazirali na klasu pozitivno definitnih i semidefinitnih matrica te pokazali u slučaju pozitivno semidefinitne matrice M da je zadaća rješiva ako je dopustiva, a u slučaju pozitivno definitnh matrica je k tome rješenje i jedinstveno za svaki vektor q. Osim te dvije klase, govorili smo i o klasama S-matrica i P-matrica. Ova posljednja nam je bila posebno zanimljiva jer smo za tu klasu mogli dati teorem koji govori da je jedinstveno rješenje linearne zadaće komplementarnosti također jedinstveno rješenje zadaće kvadratičnog programiranja. Na samom kraju rada pozabavili smo se algoritmima za rješavanje linearne zadaće komplementarnosti direktnim metodama te pokazali na primjerima kako možemo riješiti zadaću linearne komplementarnosti te zadaću kvadratičnog programiranja koristeći Lemkeov algoritam.The linear complementarity problem is an excellent context to illustrate concepts of linear algebra and matrix theory. At the beginning we introduced some basic terms and results regarding matrix theory, especially positive definite and semi-definite matrices. Moreover, we mentioned some results concerning convex quadratic functions as they are essential for understanding of quadratic program. Before establishing the connection between quadratic program and linear complementarity problem, we defined first-order optimality conditions. More precisely, we derived Karush-Kuhn-Tucker conditions that are integral part of building the connection between aforementioned problems. In the third chapter, we introduced the concept of complementarity cones as linear complementarity problem rests on that idea. We demonstrated that by the example. Main part of the chapter is based on presenting the results pertaining to the existence and multiplicity of solutions to the linear complementarity problem. At first, we were based only on the class of positive definite and positive semi-definite matrices. In the case of positive semidefinite matrices we showed an important result: if the linear complementarity problem is feasible, then it’s solvable. In the case of positive definite matrices, the linear complementarity problem has a unique solution. Moreover, we mentioned the classes of S-matrices and P-matrices. Class of P-matrices has an interesting property as the unique solution of linear complementarity problem characterized by P-matrix is also the unique solution of the quadratic program. At the end, we developed Lemke’s algorithm for solving the linear complementarity problem and made some examples with linear complementarity problem and quadratic program

Similar works

Full text

thumbnail-image

Repository of Faculty of Science, University of Zagreb

redirect
Last time updated on 03/02/2019

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.