Let {X (t), t >= 0} be a stationary Gaussian process with zero-mean and unit variance. A deep result derived in Piterbarg (2004) [23], which we refer to as Piterbarg's max-discretisation theorem gives the joint asymptotic behaviour (T -> infinity) of the continuous time maximum M(T) = max(t is an element of[0,T]) X(t), and the maximum M-delta(T) = max(t is an element of R(delta)) X(t), with R(delta) subset of [0, T] a uniform grid of points of distance delta = delta(T). Under some asymptotic restrictions on the correlation function Piterbarg's max-discretisation theorem shows that for the limit result it is important to know the speed delta(T) approaches 0 as T -> infinity. The present contribution derives the aforementioned theorem for multivariate stationary Gaussian processes
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.