Article thumbnail
Location of Repository

Chemical Reactivity of Penicillins and Cephalosporins. Intramolecular Involvement of the Acyl-Amido Side Chain

By Antonio Llinas, Bartolomé Vilanova, Juan Frau, Francisco Munoz, Josefa Donoso and Michael I. Page


The rate of degradation of 6-epi-ampicillin in acidic, neutral, and alkaline aqueous solutions was followed at 35 °C and an ionic strength of 0.5 mol dm-3 (KCl) by high-performance liquid chromatography (HPLC) and spectrophotometric assays. Pseudo-first-order rate constants were determined in a variety of buffer solutions, and the overall pH−rate profile was obtained by extrapolation to zero buffer concentration. The hydrolysis of 6-epi-ampicillin is subject to acid and hydroxide-ion catalysis and, for a penicillin, an unusual pH-independent reaction. Intramolecular general base-catalyzed hydrolysis by the side chain amido group is proposed to explain the enhanced rate of neutral hydrolysis of 6-epi-ampicillin and cephalosporins. The β-lactam of 6-epi-ampicillin also undergoes intramolecular aminolysis by nucleophilic attack of the 6-α side chain amino group to give a stable piperazine-2,5-dione derivative. The low effective molarity for intramolecular aminolysis of only 40 M is partly attributed to the unfavorable trans to cis isomerization about the 6-amide side chain required for ring closure. Theoretical calculations show that the intramolecular aminolysis of 6-epi-ampicillin nucleophilic attack occurs from the α-face of the β-lactam ring with an activation energy of 14.4 kcal/mol

Topics: Q1
Publisher: American Chemical Society
Year: 1998
DOI identifier: 10.1021/jo981628j
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.