Chemical Reactivity of Penicillins and Cephalosporins. Intramolecular Involvement of the Acyl-Amido Side Chain

Abstract

The rate of degradation of 6-epi-ampicillin in acidic, neutral, and alkaline aqueous solutions was followed at 35 °C and an ionic strength of 0.5 mol dm-3 (KCl) by high-performance liquid chromatography (HPLC) and spectrophotometric assays. Pseudo-first-order rate constants were determined in a variety of buffer solutions, and the overall pH−rate profile was obtained by extrapolation to zero buffer concentration. The hydrolysis of 6-epi-ampicillin is subject to acid and hydroxide-ion catalysis and, for a penicillin, an unusual pH-independent reaction. Intramolecular general base-catalyzed hydrolysis by the side chain amido group is proposed to explain the enhanced rate of neutral hydrolysis of 6-epi-ampicillin and cephalosporins. The β-lactam of 6-epi-ampicillin also undergoes intramolecular aminolysis by nucleophilic attack of the 6-α side chain amino group to give a stable piperazine-2,5-dione derivative. The low effective molarity for intramolecular aminolysis of only 40 M is partly attributed to the unfavorable trans to cis isomerization about the 6-amide side chain required for ring closure. Theoretical calculations show that the intramolecular aminolysis of 6-epi-ampicillin nucleophilic attack occurs from the α-face of the β-lactam ring with an activation energy of 14.4 kcal/mol

Similar works

Full text

thumbnail-image

University of Huddersfield Repository

redirect
Last time updated on 12/04/2012

This paper was published in University of Huddersfield Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.