An active front steering control based on composite nonlinear feedback for vehicle yaw stability system

Abstract

Vehicle stability control (VSC) is one of important topics in vehicle dynamics and active automotive control. This research is focusing on vehicle stability control by active steering system that utilizes steering control method to improve stability of the vehicle. This stability control system is solely based on kinematic and dynamics motion of vehicle. The development of mathematical model of vehicle dynamic that includes body and tyre dynamics is one of the most important steps to make sure the result obtain is close as possible to actual system. In the other hand, an analysis of transient state is very crucial in control system performance where one of the objectives is to track reference signal as fast as possible with minimum overshoot, fast settling time, and without exceed nature of actuator saturation limit. Hence, in order to achieve this target, a robust and high performance of control algorithm is essential for vehicle stability control. In this research project report, a Composite Nonlinear Feedback (CNF) strategy is used to control yaw rate of vehicle through active steering. Extensive computer simulation is performed with considering a various profile of cornering manoeuvres with external disturbance to evaluate its performance in different scenarios. The performance of the proposed controller is compared to conventional Proportional Integration and Derivative (PID) for effectiveness analysis

Similar works

Full text

thumbnail-image

Universiti Teknologi Malaysia Institutional Repository

redirect
Last time updated on 14/09/2013

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.