Abstract

The microstructures of as-cast ZK40, ZK40 with 2% (mass fraction) CaO and ZK40 with 1% (mass fraction) Y were investigated, and the intermetallic phase morphology and the distribution were characterised. By having discrete intermetallic particles at the grain boundaries for the ZK40, the microstructure was modified to a semi-continuous network of intermetallic compounds along the grain boundaries for the ZK40 with CaO or Y additions. The CaO was not found in the microstructure. However, Ca was present in Ca2Mg6Zn3 intermetallic compounds which were formed during casting. Hydrogen evolution and electrochemical impedance spectroscopy tests revealed that the addition of CaO slightly enhanced the corrosion resistance whereas Y had a negative effect on the corrosion resistance of ZK40. Immersion tests showed that severe localised corrosion as well as corrosion along the intermetallic compounds played an important role in the corrosion process of ZK40–Y whereas the localised corrosion was not pronounced for ZK40 or ZK40–CaO alloys. Micro-segregation in the α-Mg matrix was notably higher for the ZK40 alloy compared with the modified alloys. The combination of this effect with a possible formation of a more stable corrosion layer for the ZK40–CaO was attributed as the main reason for an improved corrosion resistance for the ZK40–CaO alloy.</p

Similar works

Full text

thumbnail-image

The University of Manchester - Institutional Repository

redirect
Last time updated on 19/07/2018

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.