Article thumbnail

Discretization of linear fractional representations of LPV systems

By R. Toth, M. Lovera, P.S.C. Heuberger and P.M.J. Van den Hof

Abstract

Commonly, controllers for Linear Parameter- Varying (LPV) systems are designed in continuous-time using a Linear Fractional Representation (LFR) of the plant. However, the resulting controllers are implemented on digital hardware. Furthermore, discrete-time LPV synthesis approaches require a discrete-time model of the plant which is often derived from continuous-time first-principle models. Existing discretization approaches for LFRs suffer from disadvantages like alternation of dynamics, complexity, etc. To overcome the disadvantages, novel discretization methods are derived. These approaches are compared to existing techniques and analyzed in terms of approximation error, considering ideal zero-order hold actuation and sampling

Publisher: Institute of Electrical and Electronics Engineers (IEEE)
Year: 2009
DOI identifier: 10.1109/cdc.2009.5400623
OAI identifier:
Provided by: NARCIS
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.loc.gov/mods/v3 (external link)
  • https://pure.tue.nl/ws/oai (external link)
  • https://research.tue.nl/nl/pub... (external link)
  • https://pure.tue.nl/ws/files/3... (external link)
  • https://research.tue.nl/nl/pub... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.